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Evolutions of Transformers

Natural Language Processing:
* BERT (Bidirectional Encoder Representations from Transformers)
 GPT (Generative Pre-trained Transformer)

Computer Vision:
* Vision Transformer
* Swin Transformer, Pyramid Vision Transformer

Unifying Vision and Language

* VIiLBERT: Vision and Language BERT

* CLIP: Contrastive Language-Image Pre-training
* DALL-E: Zero-Shot Text-to-Image Generation

* LLaVA: Large Language and Vision Assistant



Transformer for Vision and Language

* Transformers thus far focus on either NLP or vision. How do we build a model
for unified vision and language tasks using transformers?
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VILBERT: Vision and Language BERT

* VILBERT is a transformer-based model that extends the BERT architecture to
process both visual and language inputs, marking one of the first successful
applications of transformers for multimodal tasks.

* Goal: To enable joint understanding of images and text, supporting tasks like image
captioning, visual question answering (VQA), and cross-modal retrieval.

e Uses two parallel transformer streams—one for images and one for text.
e Start with a pretrained BERT model and finetune it.

BERT




VILBERT: Vision and Language BERT

* Uses two parallel transformer streams—one for images and one for text.

e Start with a pretrained BERT model and finetune it.

e Extract regions from an image using pre-trained detector.
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VILBERT: Vision and Language BERT

* Uses two parallel transformer streams—one for images and one for text.
e Start with a pretrained BERT model and finetune it.
e Extract regions from an image using pre-trained detector.

* Use another BERT-like model to process the visual tokens.

* For each detected object, the visual token is defined as the mean-pooled convolutional feature from that region.

* It introduces spatial positional encoding, constructing a 5-d vector from detected region position (top-left and
bottom-right coordinates) and the fraction of image area covered. This is then linearly projected to match dimension
of visual tokens.
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VILBERT: Vision and Language BERT

* Uses two parallel transformer streams—one for images and one for text.

e Connect the vision and language processing by a co-attention mechanism.

* By exchanging keys and values between streams in multi-headed attention, each stream integrates
features from the other, enhancing visual understanding with language features and vice versa — in effect
performing image-conditioned language attention in the visual stream and language-conditioned image
attention in the linguistic stream.
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VILBERT Pretraining and Transfer Tasks

* VILBERT is trained on the Conceptual Captions dataset under two training tasks:

* Masked Multi-Modal Learning: It follows the MLM task in standard BERT. It learns to
reconstruct image region categories or words for masked inputs given the observed inputs.

* Multi-Modal Alignment Prediction: It learns to predict whether or not the caption describes
the image content.

» After pretraining, VILBERT is adapted to various established vision-and-language
tasks through minimal modifications.

* Fine-tuning generally involves adding a task-specific classification layer, enabling end-to-
end training without major architecture changes.
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VILBERT Pretraining

 Masked Multi-Modal Learning: It learns to reconstruct image region categories or words for
masked inputs given the observed inputs.

* For visual tokens, instead of directly regressing the masked feature values, it predicts a distribution over semantic
classes for the corresponding image region.

* To supervise this, the model minimizes the KL divergence between its predicted distribution and the output
distribution from Faster R-CNN for the same region.
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VILBERT Pretraining

* Masked Multi-Modal Learning: It learns to reconstruct image region categories or words for
masked inputs given the observed inputs.

* For visual tokens, instead of directly regressing the masked feature values, it predicts a distribution over semantic

classes for the corresponding image region.

* To supervise this, the model minimizes the KL divergence between its predicted distribution and the output

distribution from Faster R-CNN for the same region.
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VILBERT Pretraining

 Multi-Modal Alignment Prediction: It learns to predict whether or not the caption

describes the image content.

* The model predicts whether an image-text pair is aligned by learning holistic visual (h,,,) and linguistic
(h,,) representations, similar to the [CLS] token in BERT and ViT.

* It uses an element-wise product of h,, and h,, , followed by a binary classifier to determine alignment.
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VILBERT Pretraining

 Multi-Modal Alignment Prediction: It learns to predict whether or not the caption

describes the image content.

* The model predicts whether an image-text pair is aligned by learning holistic visual (h,,,) and linguistic
(h,,) representations, similar to the [CLS] token in BERT and ViT.

* It uses an element-wise product of h,, and h,, , followed by a binary classifier to determine alignment.
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VILBERT Transfer Tasks

* A pretrained VIiLBERT is transferred to a set of vision-and-language tasks: such as
Visual Question Answering (VQA), Visual Commonsense Reasoning (VCR),
Grounding Referring Expressions, and Caption-Based Image Retrieval.

Large-scale Web Data Embodied Visual Navigation
(Conceptual Captions) (Room-to-Room)

Transfer
Grounding

Blue sofa in the living room. Walk through the bedroom and out of the door into the
hallway. Walk down the hall along the banister rail
through the open door. Continue into the bedroom with a
round mirror on the wall and butterfly sculpture.

to a very tall building.

A large bus sitting next |; =

Why is [person4jll] pointing at
?

rson1§]

Guy in yellow dribbling ball

Is there something to cut the vegetables with?

[pers:

VQA VCR Q-A VCR QA-R Referring Expressions
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Caption-Based Image Retrieval



VILBERT: Summary

* ViLBERT is a multi-modal model that extends BERT to jointly process visual and
linguistic information, solving tasks that require understanding both modals.

 Architecture:

* Dual Stream: Uses two parallel BERT streams — one for visual inputs and one for language
inputs — connected via Co-Attention Transformer Layers.

* Co-Attention Mechanism: Enables each stream to attend to the other by exchanging key-
value pairs, allowing image-conditioned language features and vice versa.
* Pretraining Tasks:

* Masked Multi-Modal Learning: Masks out words or visual regions, training the model to
predict masked words of semantic class of visual regions given the observed tokens.

* Multi-Modal Alignment Prediction: Determines if a given image-caption pair is aligned.

* Applications:

* VILBERT achieves strong performance on vision-and-language tasks like Visual Question
Answering (VQA), Visual Commonsense Reasoning, and Image-Text Retrieval.



CLIP: Contrastive Language-Image Pre-training

e CLIP (Contrastive Language-Image Pre-training) is a vision and language model
that learns to understand images and texts together using natural language
descriptions to supervise image classification.

* CLIP learns to embed both text and image into a shared representation space.

* Generalized Understanding:

* CLIP learns diverse visual concepts through natural language that is capable of zero-short
learning.

e Zero-shot learning:

* CLIP can classify unseen categories without specific training, leveraging contrastive
learning.

* Traditional models need labeled data for each category.
* CLIP is adaptable to new tasks and data without additional labeling.



Contrastive Learning in CLIP

* What is Contrastive Learning?

* A type of self-supervised learning that focuses on grouping related items closer while
pushing unrelated items apart in the learned representation space.

* CLIP utilizes a contrastive learning loss that maximizes similarity between paired
image and text embeddings (positive pairs) and minimizes similarity for all other
pairs within a training batch (negative pairs).

* For each sample image I; ©
* Minimize its distance with its positive pair T; ©
* Maximize its distance with its negative pair T; O

negative samples /

* Goal: d(f(I), f(Ty)) < d (f(ll);f(T]))

positive samples

_ _ exp(l; - Ty) '\ exp(l; - T;)
it S ) )



CLIP Architecture Overview

e Dual-Encoder Structure:

* CLIP employs two parallel encoders, VIT for images and GPT-2 like Transformer for text,
simultaneously processing both visual and textual information.

* Both encoders project their outputs into a shared multimodal embedding space, effectively
pairing them in a common representation space.

* Contrastive Pre-training:
* During training, the contrastive learning Pepper the || [N

Encoder
objective encourages the encoders to N ¢ "
maximize the similarity between the correct — Tl T2 | T B
image-text pairs while minimizing it for N .m, 'w .
incorrect pairs. i |

* CLIP is trained using very large batch sizes O
(e.g., 32,768) on 400M image-text pairs e Rl Elka
to ensure efficient contrastive pairing of
image-text pairs and mitigating the effects
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of false negatives problem.



CLIP Architecture Overview
* Algorithm:

* Minibatch of aligned images I and texts T are passed through an Image Encoder (ViT) and
Text Decoder (Transformer), respectively, to produce image features I and text features T.

# image_encoder - ResNet or Vision Transformer ‘\\\\\\\\\\
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# Tln; 1] - minibatch of aligned texts Pepper the i
ild i d 1 d i of i bed aussie pup —> ext
# W_i[d_i, d_e] - learne proj of image to embe Encoder i
# W_t[d_t, d_e] - learned proj of text to embed T
# t - learned temperature parameter [

//////////// T, | T, | Ts w | TN

# extract feature representations of each modality

I_f = image_encoder(I) #[n, d_i]
T_f = T) # d_t

i text_encoder(T) [n, d_t] L
# joint multimodal embedding [n, d_e]

I_e = 12_normalize(np.dot(I_f, W_i), axis=1) > I
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n] é"m%f —>» I3
logits = np.dot(I_e, T_e.T) * np.exp(t) ficcor
# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0) I
loss_t = cross_entropy_loss(logits, labels, axis=1) o
loss = (loss_i + loss_t)/2



CLIP Architecture Overview
* Algorithm:

* The representations I and Tr are projected into a shared embedding space using learned projection matrices

* These projected embeddings are then L2-normalized and the similarity between each image embedding and
each text embedding is calculated using cosine similarity.

image_encoder - ResNet or Vision Transformer

text_encoder - CBOW or Text Transformer \\\\\\\\\\\
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# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)
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# scaled pairwise cosine similarities [n, n] Encoder

logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function
labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)

loss (loss_i + loss_t)/2



CLIP Architecture Overview

* Algorithm:

* Since each image I; should only match its corresponding text T;, we set the ground truth labels for
this task as labels = [1, ..., N] which indicates that the correct match for each sample lies along the

diagonal of the logits
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CLIP Architecture Overview
* Algorithm:

* For each image I;, the model tries to predict the correct text T; among all texts in the batch.

* This is done by applying cross-entropy loss across each row of the logits matrix.
* Treating it as a classification problem where the correct class is the corresponding text.

image_encoder - ResNet or Vision Transformer
text_encoder - CBOW or Text Transformer
I[n, h, w, c] - minibatch of aligned images

- minibatch of aligned texts
] - learned proj of image to embed
W_t[d_t, d_e] - learned proj of text to embed
t - learned temperature parameter
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12_normalize(np.dot(I_f, W_i), axis=1)
12_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels np.arange(n)

[loss_i = cross_entropy_loss(logits, labels, axis=8)|
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss (loss_i + loss_t)/2
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CLIP Architecture Overview

* Algorithm:

* Similarly, for each text T;, the model tries to predict the correct image I; among all images in batch.

* This is also done by applying cross-entropy loss across each column of the logits matrix.

image_encoder
text_encoder
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oint multimodal embedding [n
12_normalize(np.dot(T_f,

ResNet or Vision Transformer
CBOW or Text Transformer
minibatch of aligned images
minibatch of aligned texts
learned proj of image to embed
learned proj of text to embed
learned temperature parameter

xtract feature representations of each modality
image_encoder(I) #[n, d_i]
text_encoder(T) #[n, d_t]

i 18]
W_i), axis=1)
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# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0)
[loss_t = cross_entropy_loss(logits, labels, axis=1)|
loss = (loss_i + loss_t)/2
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CLIP: Zero-shot classification

* At test time, the learned text synthesizes a zero-shot linear classifier by

embedding the names or descriptions of the target dataset’s classes.

* Text Prompts as Input Categories:
* (Categories like "plane," "
"bird" are each turned into descriptive
phrases ("A photo of a {object}").
* Encoding:

 The phrases and input image are passed

to the text encoder and image encoder,
respectively, to produce text and image
features.

e Calculating Similarities:

* Asimilarity score is calculated using the
dot product between the image feature
and each text feature.

* The label with the highest similarity score is
selected as the classification result.

car," "dog," and

A photo of

-

A photo of
a

Y Y Y
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CLIP: Zero-shot classification

* At test time, the learned text synthesizes a zero-shot linear classifier by
embedding the names or descriptions of the target dataset’s classes.

FoOOD101

* Text Prompts as Input Categories:

e (Categories like "plane," "car," "dog," and
"bird" are each turned into descriptive
phrases ("A photo of a {object}").

* Encoding:

 The phrases and input image are passed
to the text encoder and image encoder,
respectively, to produce text and image
features.

e Calculating Similarities:

* Asimilarity score is calculated using the
dot product between the image feature
and each text feature.

* The label with the highest similarity score is
selected as the classification result.

guacamole (?0.19%) Ranked 1out of 101 labels
+ aphoto of guacamole, a type of food.
ceviche

edamame

tuna tartare

hummus
YOUTUBE-BB

airplane, person (89.0%) Ranked Toutof 23

+ a photo of a airplane.

bird




/ero-shot CLIP Results

* The performance of the best zero-shot CLIP model, ViT-L/14, is compared with a
ResNet-101 that has the same performance on the ImageNet validation set.

* CLIP’s features are more robust to distribution shift when compared to models
pre-trained on ImageNet.

IMAGENET IMAGENET
DATASET RESNET101 CLIP VIT-L DATASET RESNET101 CLIP VIT-L
g g, L ESSS -
LT &k Fe-ot e
B— : » \ : \..\ i oasas
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\ . S a2 76.2% 76.2% | N N 32.6% 72.3%
ImageNet ObjectNet
r
N = )
‘. 7 S " (\(// % [ — =
S\ 70.1% — - 25.2% 60.2%
ImageNet V2 ImageNet Sketch
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Applications of CLIP

StyleCLIP: Text-Driven Manipulation

of StyleGAN Imagery

* Introduces an optimization scheme
that utilizes a CLIP-based loss to
modify an input latent vector in
response to a user-provided text
prompt.

“Emma Stone” “Mohawk hairstyle” “Without makeup” “Cute cat” “Lion” “Gothic church”

ClipCap: CLIP Prefix for Image

Captioning

e CLIPCap builds on CLIP by
leveraging CLIP's understanding of
the visual domain to generate
descriptive captions.

i —

a motorcycle is on display a group of people sitting a living room filled with a fire hydrant is in the display case filled with
in a showroom. around a table. furniture and a book shelf middle of a street. lots of different types of
filled with books. donuts.



DALL-E: Zero-Shot Text-to-Image Generation

e Can we extend ViLBERT or CLIP for text-to-
image generation?

* Generating high-quality images requires capturing
fine-grained details.

* ViT models struggle with this, often resulting in
images that appear patchy and lack fine details.

* DALL-E is a dVAE model with a transformer
that autoregressively models the text and
image tokens as a single stream of data.

e 12 billion parameters version of GPT-3.
e Dataset comprised of 3.3M text-image pairs.

* DALL-E demonstrated zero-shot capabilities:

* It can generate relevant images from text
descriptions not seen during training.

Zero-Shot Text-to-Image Generation

Aditya Ramesh ! Mikhail Pavlov'! Gabriel Goh! Scott Gray!
Chelsea Voss ' Alec Radford' Mark Chen' Ilya Sutskever '

Abstract

Text-to-image generation has traditionally fo-

sed o ﬁdgbttrmodlg sumptions for
trami ng on a fixed dataset. Thes assumpt
might in 1 compl X arch tectur xiliary
losses, or side information such as b_| tprtl—
bels or segmentaﬁon masks supplied during train-
ing. We describe a simple approach for this task
based on a transformer that autoregressively mod-
els the text and image tokens as a single stream of
data. With sufficient data and scale, our approach
is competitive with previous domain-specific mod-
els when evaluated in a zero-shot fashion.

Text Prompt ~ an armchair in the shape of an avocado. . . .

eeeee N VY. AX YW.

Text Prompt  the exact same cat on the top as a sketch on the bottom

Al Genera ted
images .
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Recall: Variational Autoencoders

Inference Model Sample Generative Model

z ~ N(z |1y (x), 62 (O pe(x | 2) Ho (2)

log 2

Datapoint x

ELBO Objective

Ez~q¢(z |x) [log Po (x | Z) - KL(qw(Z | X)HP(Z)]



Recall: Discrete Variational Autoencoders

>~

Decoder

Encoder

N [O0000

qy(z | x) po(x | z)

* VAEs usually use a continuous representation for latent z.

* But a lot of data we encounter in the real-world favors a discrete representation.
 E.g.,images can be described as a collection of objects.

* Furthermore, transformers are designed to work on discrete tokens.



Recall: Discrete Variational Autoencoders

2 ) K
Embedding
Space

Encoder Decoder

* VAEs usually use a continuous representation for latent z.
* But a lot of data we encounter in the real-world favors a discrete representation.
 E.g.,images can be described as a collection of objects.
* Furthermore, transformers are designed to work on discrete tokens.
* Discrete VAE (dVAE): replace Gaussian latent with categorical code.

discrete codes to image

56 | 73|67 |23|81]|19 4{ J—» s

/ image to discrete codes



Recall: Discrete Variational Autoencoders

[ e 6,0, e,

Embedding
Space

Encoder Decoder

* Discrete VAE (dVAE): replace Gaussian latent with categorical code.

* |t modifies the standard VAE by adding a discrete component to the network.
* By quantizing the , dVAE limits the possible values that the latent variables can
take to codebook, a finite set of vectors associate with a corresponding index. ¢yge 4
* The output of the encoder network is compared to all f
the vectors in the codebook, and the E z —~ IRCCNieg DI o
closest in Euclidean distance are fed to the decoder to
Quantize(E(x)) = ej, wherek = argmin ||E(x) — e;|

reconstruct the image. )



Recall: Discrete Variational Autoencoders

[ e 6,0, e,

Embedding
Space

Encoder Decoder

Discrete VAE (dVAE): Learning the Prior.

Once the dVAE is fully trained, we can learn the prior p(z) over the latent codes.

We can then generate new data by sampling from the prior and feeding it to the decoder.

Given the encoder outputs a sequence of latent codes for each datapoint, we can use any

autoregressive model (e.g., RNN or Transformer) to train the prior.

The autoregressive factorization is, given all previous latent codes in the sequence, predict
the next one:

p(z) = p(z1)p(22121)p (23|21, 22)D (24121, 22, Z3) ...



DALL-E Model: dVAE with Autoregressive Prior

* In Text-to-Image Generation, we want to generate images x given captions y.
* The Discrete VAE (dVAE) encodes images x into codes (tokens) z.
* The Discrete VAE (dVAE) decoder reconstructs images x given Z.
* The Transformer learns to map captions y into codes z, to generate x via the dVAE decoder.
e DALL-E maximizes the evidence lower bound (ELBO) on the joint likelihood of the model
distribution over RGB images x, captions y, and the codes z for the encoded RGB image.
ELBO Objective

Po,p(x,¥,2z) = po(x|y,z) pyp (¥, 2)

log pg,g (%, ¥) = Eyeqyz 1 [logpe(x | ¥,2) — BKL(qy (v, 2 | x)|Ipg 7, 2)]

* (y denotes the distribution of a 32 x 32 grid of codes generated by the dVAE encoder for a 256
x 256 RGB image.

* pg denotes the distribution of RGB images generated by the dVAE decoder given the codes.

* pyp denotes the joint distribution over the text and image codes modeled by the transformer.



DALL-E: Two Stage Training

 Stage 1: Train a discrete variational autoencoder (dVAE) to compress each RGB
image (256 x 256) into a smaller image token grids (32 x 32).

 Stage 2: Train an autoregressive transformer from the concatenation of text
tokens with image tokens.

* Some final samples shown below:

3

|

(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads (d) the exact same cat on the
a tapir with the texture of an hedgehog in a christmas “backprop”. a neon sign that top as a sketch on the bottom
accordion. sweater walking a dog reads “backprop”. backprop

neon sign




DALL-E Stage 1: Learning the Visual Codebook

* The dVAE is trained to map 256x256 ==

2. the encoder outputs &

image to a fixed-size grid of codebook e
vectors. For DALL-E, the grid size is Gl
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DALL-E Stage 1: Learning the Visual Codebook

3. soft-sample codebook vectors from the

* The dVAE decoder takes the distribution of |z~ cmesomerassuer

e | iz decoder network to reconstruct
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DALL-E Stage 1: Learning the Visual Codebook

* When an image is processed through the encoder of the dVAE, it is transformed
into the probability distribution of a set of indices pointing to the codebook
vectors, effectively compressing the image.

LLLLLL
Index
2 the ennoderouipu Latent vector 1’s distribution
istributions over 0 0.2
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B , 1 0.3
bl e . [2 [os | Lt | Godebook Vector
networ ) L ] |
_ ‘ 3 0 [0.01,-2.3, 5.6, 0.04, -0.1, 8.92, 3.24, ...]
= e 0.1
K AN : 1 [5.4,0.65,0.2, 4.6, 8.9, -2.43, 0.07, ...]
N 2. e [ 70
N / ‘ ! = [9.78,0.67,-3.4, 0.2, -1.0, 7.2, 138, ...]
o 4 0.4
L — 2 [2.45, -8.9, 0.3, 2.04, -0.89, 19.1,0.3, ...]
S 4
0.15 \
5 Latent vector 2’s distribution




DALL-E Stage 1: Learning the Visual Codebook

* The process of selecting indices from a codebook is inherently discrete and non-
differentiable.

e DALL-E uses the Gumbel-Softmax distribution as a continuous relaxation of the
discrete distribution.

* This is done by adding Gumbel noise to the logits (the inputs to the softmax function) and
applying a softmax function with a temperature parameter, 7.
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DALL-E Stage 2: Learning the Prior Distribution

* The parameters from Stage 1, which include the encoder (that maps images to
tokens) and the decoder (that reconstructs images from tokens), are frozen.

* Indeed, we can now use the frozen decoder to generate images. But how to
align with a text (i.e., the user prompt)?
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DALL-E Stage 2: Learning the Prior Distribution

* The text prompt is tokenized using Byte Pair Encoding (BPE), which breaks down
the text into a sequence of up to 256 tokens.

* For images, the previously trained dVAE encoder is used to represent each
image as a sequence of 1024 tokens (which are indices of the learned visual
codebook).
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DALL-E Stage 2: Learning the Prior Distribution

* A 12B autoregressive transformer.

* Input (Concatenated Sequence): The text and image tokens are concatenated
to form a single input sequence to the transformer.

* Desired Output (Image Tokens): the model is trained to predict image tokens.
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DALL-E Stage 2: Learning the Prior Distribution

* This sequence also includes special tokens for padding, , and
markers to distinguish different parts of the input.

, the predicted by the
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Text to Image Results
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Iaav;ry gut: giat on the ground at an train model on it tv on top of a stand d g?:g:?tigf %iogle a very cute giraffe f?i dklt:h;rc])xtgnz :rgr:;%gifnani'?ﬁ::
Y %ikg 9 airport with baggage with other cars and with a guitars Wood bgnch making a funny face. 9 ’sink snowg
: cars nearby. things sitting next to :

Validation

DALL-E —

DM-GAN DF-GAN Ours

AttnGAN




Text to Image Results

a snail made of harp. a snail with the texture of a harp.

a sph J; > made of porcupine. a sphere with the texture of a porcupine.




DALL-E: Summary

* DALL-E is a combination a dVAE model with a 12-billion parameter transformer,
specifically trained to generate images from textual descriptions.

* Architecture:

* Discrete VAE: Uses dVAE to encode images into discrete codes and decode images given the
discrete codes.

* Transformer: Uses an autoregressive transfer model, trained with a dataset of text-image
pairs.
* Key Features:

* Text-to-Image Generation: DALL-E generates images based on descriptive text inputs,
creating objects, scenes, and imaginative visuals from scratch.

e Zero-Shot Learning: Capable of generating novel image concepts that were not explicitly
part of its training, demonstrating zero-shot reasoning.



LLaVA: Large Language and Vision Assistant

* LLaVA aims to integrate a large language model (LLM) with vision capabilities to
understand and generate contextual dialogue based on visual input.

* Model Architecture -- Two Main Components:

 Visual Encoder: Utilizes a pre-trained image encoder (e.g., CLIP) to extract visual features
from images. These features are used to contextualize visual information.

* Language Decoder: A large language model (e.g., Vicuna) that processes both text and the
output from the visual encoder, enabling the generation of human-like dialogue.

e Fusion of Modalities:

* The integration process Language Response Xa@ QQ
involves mapping image =
features to the LLM's token Language Model f,
space, making the visual
information compatible for y— m m m m m m

rojection W H,
use by the language model. Z, H, f

Vision Encoder

X, Image X Language Instruction



Instruction Tuning in LLMs

* Instruction-tuning is a training process where an LLM learns to follow natural
language instructions by being exposed to a diverse set of queries and responses.

* This improves a model’s ability to understand and respond to a broad variety of user
prompts, making interactions more natural, coherent, and context-aware.

* How do we collect the instruction tuning data?

* Human: high-quality, written by humans — high cost
* Machine: strong LLM-based teacher like ChatGPT — affordable cost

Instruction Answer

Sl s el e There could be ma.ny reasons why a person might cry.
) They could be feeling sad, scared, angry, or

Behavior: cry.

frustrated...

Certainly! Without specific preferences in mind, I'll
Recommend a movie for me. recommend a popular and highly-rated movie: "The

Shawshank Redemption." It's a classic drama film ...



Visual Instruction Tuning in LLaVA

* In LLaVA, instruction-tuning is tailored to handle both text and visual inputs,
teaching the model how to interpret and respond to complex multimodal
instructions.

* However, we don’t have multi-modal instruction tuning datasets.

* LLaVA uses image-caption pairs and question-answer sets to simulate real-world queries
about images.

Output

The unusual aspect of this image is ...
Instruction t
What is unusual about this image? ——— Language Decoder

)
Image Cross-modal Connector
)

Visual Encoder




GPT-Assisted Visual Instruction Data Creation

* LLaVA uses image-caption pairs and question-answer sets to simulate real-world
gueries about images.
e Given an image and its corresponding caption, a natural extension is to generate a list of
questions. GPT-4 is prompted to create a set of questions and responses.

* To generate richer data that encodes visual content using symbolic representations:

* Captions: Provide descriptions of the visual scene from multiple perspectives.

* Bounding Boxes: Mark locations of objects in the image, providing both object identification and spatial
context.

Image

Context (caption) A group of people standing
outside of a black vehicle
with various luggage.

Context (bbox)
person: [0.68, 0.24, 0.77, 0.69], person: [0.63, 0.22, 0.68, 0.51],

M | person: [0.44, 0.23, 0.48, 0.34], backpack: [0.38, 0.69, 0.48, 0.91],




GPT-Assisted Visual Instruction Data Creation

* Human Annotations:
 Humans provide the initial In-Context Examples in the form of captions and bounding boxes
along with instructions and answers.
e GPT-based Inference:

* GPT-4 is prompted with the initial human-generated context to generate new instructions
and answers.

In-Context Examples Text-only Data Engine

g
* The generated data forms a triplet: |'™9¢| "

* Image ' \___[ Image Context ] Human
. caption, bbox Instruction Answer
* Instruction based on context ___(________i_____[ ________________________ ]_

. . Inference
* Answer to the posed instruction —— -
O|_|,| Image Context [ Generated | [ Generated
. (caption, bbox) Instruction N Answer )
g J
2 Instruction Answer

Visual Instruction-following Data: Triplet (image, instruction, answer)




GPT-Assisted Visua

* A total of 158K triplet samp
* 58K conversations
» 23K detailed descriptions
e 77K complex reasoning

LLaVA-Instruct-158K

Conversation: 58K
Detailed description: 23K
Complex reasoning: 77K

Instruction Data Creation

es were generated:

Response type 1: conversation

Question: What type of vehicle is featured in the image?

Answer: The image features a black sport utility vehicle (SUV).

Question: Where is the vehicle parked?

Answer: The vehicle is parked in an underground parking area, likely in a public garage.
Question: What are the people in the image doing?

Answer: The people are trying to fit all of their luggage into the SUYV, likely preparing for a trip.

Response type 2: detailed description

The image is an underground parking area with a black sport utility vehicle (SUV) parked. There
are three people in the scene, with one person standing closer to the left side of the vehicle, another
person in the middle, and the third person on the right side. They are all working together to pack
their luggage into the SUV for a trip. (omitted)

Response type 3: complex reasoning

Question: What challenges do these people face?

Answer: In the image, a group of people is standing outside a black SUV in a parking area,
surrounded by various pieces of luggage, including suitcases and backpacks. They are facing the
challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks
to be packed, which suggests that the group has a significant amount of belongings to accommodate.
They might have to strategize and arrange the luggage efficiently to ensure that everything fits
properly into the vehicle. Additionally, they need to consider the comfort of the passengers and
visibility while driving, so the placement of the luggage must not obstruct the driver’s view or make
the passengers uncomfortable during the trip.



LLaVA Stage 1: Pre-training for feature alignment

* Both the visual encoder and LLM weights are frozen, while LLaVA aligns the image
features H, with the pretrained LLM word embedding using trainable parameters
W (the projection matrix).

* This stage can be understood as training a compatible visual tokenizer for the frozen LLM.

Language Response Xa Q Q Q

Language Model f¢

AIATARATATS
M Projection W H ?H
00 Zv v q
SO (2 ERCLT ){V Image Xq Language Instruction

Data: a filtered CC3M subset (595K)



LLaVA Stage 2: Fine-tuning End-to-End

* The vision encoder is always frozen, but the pre-trained projection layer and LLM
are updated with the language-image instruction-following data.

* A visual chatbot is developed by fine-tuning on the visual instruction-tuning data.

* LLaVA is also evaluated on the ScienceQA benchmark, where the questions are provided in
the form of of natural language or images.

Language Response Xa Q Q Q

m Language Model f¢>

AIATANAIAS
m Projection W H fH
. . Zv v q
U e X, Image Xq Language Instruction

Two Tasks
* Visual Chat: LLaVA-Instruct-158K for open-ended user-oriented visual tasks.
* Science QA: Multimodal reasoning dataset for the science domain.



LLaVA Results: Recognizing visual content and generating code

| My Joke Webgite

[ Funny Jokel
[\:udn’ro ool puchling

Turn this mock-up into an interactive website using html/js, replace
the joke with a real joke.

<IDOCTYPE html>

‘ <html>
<head>
LLaVA <title>My Joke Website</title>
<style>

body { background-color: white; font-family: Arial, sans-serif; }
.container { display: flex; flex-direction: column; align-items: center; justify-content: center; height: 100vh; }
h1 { font-size: 36px; margin-bottom: 20px; }
p { font-size: 20px; }
button { background-color: blue; color: white; border: none; padding: 10px 20px; font-size: 18px; cursor: pointer; }
</style>
</head>
<body>
<div class="container">
<h1>My Joke Website</h1>
<p id="punchline">Welcome to my joke website. Push the button to reveal the punchline!</p>
<button onclick="revealPunchline()">Push me!</button>
</div>
<script>
function revealPunchline() {
document.getElementByld("punchline").innerHTML = "The punchline is: 'Why was the math book sad? Because it had too many
problems."';
}
</script>
</body>
</html>

Place the generated HTML code into an HTML renderer to render the web page.

My Joke Website My Joke Website

The punchline is: 'Why was the math book
sad? Because it had too many problems.'

Rendered website
(clicked the button)

Welcome to my joke website. Push the
button to reveal the punchline!

Rendered website

User

LLaVA

LLaVA

What are the meals that | can cook with these?

With the variety of food items stored in the refrigerator, you can prepare several meals. For example, you can create a fruit salad using the
strawberries, blueberries, and carrots. Additionally, you can make a delicious smoothie using the fruits and vegetables, which would be a
healthy and nutritious snack or breakfast option. The milk and eggs can be used to create various dishes, such as a milk-based smoothie, a
baked casserole, or scrambled eggs. The juice can also be used to make a fresh fruit and juice mix or as a refreshing homemade popsicle. The
possibilities are vast, and the meals you can create will depend on your preferences and dietary needs.

I would like to do the fruit salad. Show me the recipe.

User

Certainly! Here's a simple fruit salad recipe using the items in your refrigerator:

Ingredients:

- 2 cups fresh strawberries, sliced

- 1 cup fresh blueberries

- 1 large carrot, grated

- Juice of half a lemon

- A handful of chopped fresh parsley or mint

- A few ice cubes

- Optional: honey or maple syrup (adjust to taste)

Instructions:

1. In a large bowl, combine the sliced strawberries, blueberries, and carrot. Gently toss them together to mix.

2. Drizzle the juice of half a lemon over the fruit and vegetables to prevent them from oxidizing and add a refreshing citrus flavor.

3. Sprinkle the chopped fresh parsley or mint over the fruit and gently toss once more.

4. If desired, add a drizzle of honey or maple syrup for a touch of sweetness. Adjust the amount according to your taste preferences.

5. Cover the bowl and refrigerate the fruit salad for at least 30 minutes or up to a few hours. This allows the flavors to meld and creates a
more refreshing salad.

6. Serve the fruit salad in cups or bowls, garnished with a sprinkle of fresh parsley or mint, if desired.

This fruit salad recipe is perfect for a healthy snack or side dish, and with the variety of ingredients available in your refrigerator, it should be
easy to put together quickly.



LLaVA Results: Strong Visual Reasoning Capability

Visual input example, Extreme Ironing:

User
LLaVA

User
LLaVA

Source: https://wwu.barnoraza. con/wp- content /uploads/2016/12/03- Confusing- Pictures. jpg
What is unusual about this image?
The unusual aspect of this image is a may ironing clothes on the back of a minivan ¢§r
van. This is not a typical place to perform . % s

in a more stationary and safe location, such as a home, using a regular ironing board.

The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a
vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how
the man is able to maintain balance and stability while ironing clothes in such an unstable
environment.

[Start a new conversation, and clear the history)

What's happening in the scene?

The image depicts a man standing on top of a yellow SUV in a busy city street. He is
holding a portable ladder, seemingly ironing clothes while standing on the vehicle. Around
the scene, there are other cars, a traffic light, and a fire hydrant. Additionally, there are

two other people in the vicinity, one close to the man on the car and another further away.

The man on the ladder appears to be attracting attention due to his unconventional choice
of ironing his clothes on top of a moving car. The city street around him is bustling with
activity, adding to the unique nature of the scene.

User
GPT-4 |

What is unusual about this image?
The unusual thing about this image is that a man is ironing clothes on an ironing board
attached to the roof of a moving taxi.

User
BLIP-2

Can you explain this meme in detail?
a man is sitting on the back of a yellow cab

Strong Visual Reasoning Capability

Example 1: Extreme Ironing



LLaVA Results: Strong Visual Reasoning Capability

Strong Visual Reasoning Capability

Example 2: Parodied Mona Lisa

What may be the purpose of this painting?

The purpose of this painting could be to create al artistic representation }f the

famous painting, "The Mona Lisa," by Leonardo da Vinci. The artist has painted a

dog in the same pose as the Mona Lisa,lNearing a mask, and standing in front of a

backdrop that resembles the original painting. This artistic interpretation may serve
as a creative and humorous take on the iconic painting, drawing attention to the
dog's unique expression and the contrast between the dog's appearance and the
original subject. The painting could also be a tribute to the original work or a

commentary on the cultural significance of the Mona Lisa.



LLaVA Results: Strong Emergent OCR Capability

Strong Emerging OCR Capability

LATINX IN Al @

NeurIPS
2023

December 10 - 16, 2023

Q New Orleans
¥ Ernest N. Morial Convention Center

Example: NeurlPS 2023

https//www latinxinai.org/neurips-2023

who will be interested in this?

People interested irﬁrtificial intelligence, machine learning,fand related fields will

be interested in this event. The image features a poster advertising thg NeurlPS 2023

conference, which is a leading conference in the field of artificial intelligence.
Attendees at this conference will likely include researchers, academics, industry
professionals, and enthusiasts who are passionate about advancements in Al and its

applications.



LLaVA: Summary

e LLaVA integrates large language models (LLMs) with visual encoders to develop
multimodal capabilities and generate contextual dialogue.

* Architecture:
 Visual Encoder: extracts feature from images, typically using pre-trained CLIP.

* Language Model: utilizes a powerful pretrained LLM (e.g., LLaMA) to interpret and generate
textual content.

* Projection Matrix: a learnable projection matrix that aligns visual features with text
embeddings.
* High-Quality Data Generation:
* Uses GPT-4 to create rich, diverse instruction-following datasets with 158K language-image
samples.
* Two-Stage Training Process:
* Stage 1: Pretraining for Feature Alignment
e Stage 2: Fine-tuning End-to-End



Vision
BERT and

GPT

ViT (Vision
Transformer)
CLIP
VIiLBERT

DALL-E

LLaVA

and Language Transtformer Models Summary

Natural
Language
Processing

Computer Vision

Unified Vision-
Language
Representation
Unified Vision
and Language

Tex-to-Image
Generation

Multimodal
Dialogue
Generation

Transformer Encoder (BERT)
and Decoder (GPT)

Transformer Encoder for
image patches

Dual encoders
(ViT for images, Transformer
for text)

Dual stream Transformer
with Co-Attention

Discrete VAE with
autoregressive transformer

CLIP-based visual encoder +
Language Decoder with
projection

Pretraining on large text
corpora (masked tokens for
BERT, autoregressive for GPT)

Supervised training on image
classification

Contrastive learning on 400M
image-text pairs

Masked multi-modal learning &
alignment tasks

Two-stages: VAE pretraining,
autoregressive learning

Visual instruction tuning data
generated with GPT-4
assistance

Text-based tasks like
sentiment analysis, text
generation, etc.

Computer vision tasks:
image classification, object
recognition, etc.

Zero-shot classification,
Text-to-Image Retrieval,
etc.

Visual Question
Answering, Image-Text
Retrieval, etc.

Image generation from
text

Visual dialogue and
reasoning



