
Fall Semester 2024

René Vidal
Director of the Center for Innovation in Data Engineering and Science (IDEAS)

Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

Deep Generative Models:
Transformers for Vision and Language

Natural Language Processing:
• BERT (Bidirectional Encoder Representations from Transformers)
• GPT (Generative Pre-trained Transformer)

Computer Vision:
• Vision Transformer
• Swin Transformer, Pyramid Vision Transformer

Unifying Vision and Language
• ViLBERT: Vision and Language BERT
• CLIP: Contrastive Language-Image Pre-training
• DALL-E: Zero-Shot Text-to-Image Generation
• LLaVA: Large Language and Vision Assistant

Evolutions of Transformers

• Transformers thus far focus on either NLP or vision. How do we build a model
for unified vision and language tasks using transformers?

Transformer for Vision and Language

• ViLBERT is a transformer-based model that extends the BERT architecture to
process both visual and language inputs, marking one of the first successful
applications of transformers for multimodal tasks.
• Goal: To enable joint understanding of images and text, supporting tasks like image

captioning, visual question answering (VQA), and cross-modal retrieval.

• Uses two parallel transformer streams—one for images and one for text.
• Start with a pretrained BERT model and finetune it.

ViLBERT: Vision and Language BERT

• Uses two parallel transformer streams—one for images and one for text.
• Start with a pretrained BERT model and finetune it.
• Extract regions from an image using pre-trained detector.

ViLBERT: Vision and Language BERT

• Uses two parallel transformer streams—one for images and one for text.
• Start with a pretrained BERT model and finetune it.
• Extract regions from an image using pre-trained detector.
• Use another BERT-like model to process the visual tokens.

• For each detected object, the visual token is defined as the mean-pooled convolutional feature from that region.
• It introduces spatial positional encoding, constructing a 5-d vector from detected region position (top-left and

bottom-right coordinates) and the fraction of image area covered. This is then linearly projected to match dimension
of visual tokens.

ViLBERT: Vision and Language BERT

• Uses two parallel transformer streams—one for images and one for text.
• Connect the vision and language processing by a co-attention mechanism.

• By exchanging keys and values between streams in multi-headed attention, each stream integrates
features from the other, enhancing visual understanding with language features and vice versa – in effect
performing image-conditioned language attention in the visual stream and language-conditioned image
attention in the linguistic stream.

ViLBERT: Vision and Language BERT

Co-Attention
Transformer

Layers

Co-Attention Transformer Layers

• ViLBERT is trained on the Conceptual Captions dataset under two training tasks:
• Masked Multi-Modal Learning: It follows the MLM task in standard BERT. It learns to

reconstruct image region categories or words for masked inputs given the observed inputs.
• Multi-Modal Alignment Prediction: It learns to predict whether or not the caption describes

the image content.

• After pretraining, ViLBERT is adapted to various established vision-and-language
tasks through minimal modifications.
• Fine-tuning generally involves adding a task-specific classification layer, enabling end-to-

end training without major architecture changes.

ViLBERT Pretraining and Transfer Tasks

• Masked Multi-Modal Learning: It learns to reconstruct image region categories or words for
masked inputs given the observed inputs.
• For visual tokens, instead of directly regressing the masked feature values, it predicts a distribution over semantic

classes for the corresponding image region.
• To supervise this, the model minimizes the KL divergence between its predicted distribution and the output

distribution from Faster R-CNN for the same region.

ViLBERT Pretraining

• Masked Multi-Modal Learning: It learns to reconstruct image region categories or words for
masked inputs given the observed inputs.
• For visual tokens, instead of directly regressing the masked feature values, it predicts a distribution over semantic

classes for the corresponding image region.
• To supervise this, the model minimizes the KL divergence between its predicted distribution and the output

distribution from Faster R-CNN for the same region.

ViLBERT Pretraining

• Multi-Modal Alignment Prediction: It learns to predict whether or not the caption
describes the image content.
• The model predicts whether an image-text pair is aligned by learning holistic visual (ℎ!!) and linguistic

(ℎ"!) representations, similar to the [CLS] token in BERT and ViT.
• It uses an element-wise product of ℎ!!and ℎ"!, followed by a binary classifier to determine alignment.

ViLBERT Pretraining

✅ Aligned

• Multi-Modal Alignment Prediction: It learns to predict whether or not the caption
describes the image content.
• The model predicts whether an image-text pair is aligned by learning holistic visual (ℎ!!) and linguistic

(ℎ"!) representations, similar to the [CLS] token in BERT and ViT.
• It uses an element-wise product of ℎ!!and ℎ"!, followed by a binary classifier to determine alignment.

ViLBERT Pretraining

❌ Not Aligned

a man kicks a ball

• A pretrained ViLBERT is transferred to a set of vision-and-language tasks: such as
Visual Question Answering (VQA), Visual Commonsense Reasoning (VCR),
Grounding Referring Expressions, and Caption-Based Image Retrieval.

ViLBERT Transfer Tasks

• ViLBERT is a multi-modal model that extends BERT to jointly process visual and
linguistic information, solving tasks that require understanding both modals.
• Architecture:
• Dual Stream: Uses two parallel BERT streams – one for visual inputs and one for language

inputs – connected via Co-Attention Transformer Layers.
• Co-Attention Mechanism: Enables each stream to attend to the other by exchanging key-

value pairs, allowing image-conditioned language features and vice versa.

• Pretraining Tasks:
• Masked Multi-Modal Learning: Masks out words or visual regions, training the model to

predict masked words of semantic class of visual regions given the observed tokens.
• Multi-Modal Alignment Prediction: Determines if a given image-caption pair is aligned.

• Applications:
• ViLBERT achieves strong performance on vision-and-language tasks like Visual Question

Answering (VQA), Visual Commonsense Reasoning, and Image-Text Retrieval.

ViLBERT: Summary

CLIP: Contrastive Language-Image Pre-training
• CLIP (Contrastive Language-Image Pre-training) is a vision and language model

that learns to understand images and texts together using natural language
descriptions to supervise image classification.
• CLIP learns to embed both text and image into a shared representation space.

• Generalized Understanding:
• CLIP learns diverse visual concepts through natural language that is capable of zero-short

learning.

• Zero-shot learning:
• CLIP can classify unseen categories without specific training, leveraging contrastive

learning.
• Traditional models need labeled data for each category.
• CLIP is adaptable to new tasks and data without additional labeling.

Contrastive Learning in CLIP
• What is Contrastive Learning?
• A type of self-supervised learning that focuses on grouping related items closer while

pushing unrelated items apart in the learned representation space.

• CLIP utilizes a contrastive learning loss that maximizes similarity between paired
image and text embeddings (positive pairs) and minimizes similarity for all other
pairs within a training batch (negative pairs).
• For each sample image 𝐼!

• Minimize its distance with its positive pair 𝑇#
• Maximize its distance with its negative pair 𝑇$

• Goal: 𝑑 𝑓 𝐼# , 𝑓 𝑇# ≪ 𝑑 𝑓 𝐼# , 𝑓 𝑇$

ℒ"#$%&'(% 𝐼, 𝑇 = 	(
)

− log
exp 𝐼) ⋅ 𝑇)
∑* exp 𝐼* ⋅ 𝑇)

−	 log
exp 𝐼) ⋅ 𝑇)

∑+ exp 𝐼) ⋅ 𝑇+
	

• Dual-Encoder Structure:
• CLIP employs two parallel encoders, VIT for images and GPT-2 like Transformer for text,

simultaneously processing both visual and textual information.
• Both encoders project their outputs into a shared multimodal embedding space, effectively

pairing them in a common representation space.

• Contrastive Pre-training:
• During training, the contrastive learning

objective encourages the encoders to
maximize the similarity between the correct
image-text pairs while minimizing it for
incorrect pairs.
• CLIP is trained using very large batch sizes

(e.g., 32,768) on 400M image-text pairs
to ensure efficient contrastive pairing of
image-text pairs and mitigating the effects
of false negatives problem.

CLIP Architecture Overview

• Algorithm:
• Minibatch of aligned images	𝐼	and texts T	are passed through an Image Encoder (ViT) and

Text Decoder (Transformer), respectively, to produce image features 𝐼2 and text features 𝑇2.

CLIP Architecture Overview

• Algorithm:
• The representations 𝐼% and 𝑇% are projected into a shared embedding space using learned projection matrices
• These projected embeddings are then L2-normalized and the similarity between each image embedding and

each text embedding is calculated using cosine similarity.

CLIP Architecture Overview

• Algorithm:
• Since each image	𝐼! 	should only match its corresponding text 𝑇!, we set the ground truth labels for

this task as labels = [1, … , 𝑁]	which indicates that the correct match for each sample lies along the
diagonal of the logits matrix.

CLIP Architecture Overview

• Algorithm:
• For each image 𝐼!, the model tries to predict the correct text 𝑇! among all texts in the batch.
• This is done by applying cross-entropy loss across each row of the logits matrix.

• Treating it as a classification problem where the correct class is the corresponding text.

CLIP Architecture Overview

• Algorithm:
• Similarly, for each text 𝑇!, the model tries to predict the correct image 𝐼! among all images in batch.
• This is also done by applying cross-entropy loss across each column of the logits matrix.

CLIP Architecture Overview

• At test time, the learned text synthesizes a zero-shot linear classifier by
embedding the names or descriptions of the target dataset’s classes.

CLIP: Zero-shot classification

• Text Prompts as Input Categories:
• Categories like "plane," "car," "dog," and

"bird" are each turned into descriptive
phrases ("A photo of a {object}").

• Encoding:
• The phrases and input image are passed

to the text encoder and image encoder,
respectively, to produce text and image
features.

• Calculating Similarities:
• A similarity score is calculated using the

dot product between the image feature
and each text feature.

• The label with the highest similarity score is
selected as the classification result.

• At test time, the learned text synthesizes a zero-shot linear classifier by
embedding the names or descriptions of the target dataset’s classes.

CLIP: Zero-shot classification

• Text Prompts as Input Categories:
• Categories like "plane," "car," "dog," and

"bird" are each turned into descriptive
phrases ("A photo of a {object}").

• Encoding:
• The phrases and input image are passed

to the text encoder and image encoder,
respectively, to produce text and image
features.

• Calculating Similarities:
• A similarity score is calculated using the

dot product between the image feature
and each text feature.

• The label with the highest similarity score is
selected as the classification result.

• The performance of the best zero-shot CLIP model, ViT-L/14, is compared with a
ResNet-101 that has the same performance on the ImageNet validation set.
• CLIP’s features are more robust to distribution shift when compared to models

pre-trained on ImageNet.

Zero-shot CLIP Results

Applications of CLIP
StyleCLIP: Text-Driven Manipulation
of StyleGAN Imagery
• Introduces an optimization scheme

that utilizes a CLIP-based loss to
modify an input latent vector in
response to a user-provided text
prompt.

ClipCap: CLIP Prefix for Image
Captioning
• CLIPCap builds on CLIP by

leveraging CLIP's understanding of
the visual domain to generate
descriptive captions.

• Can we extend ViLBERT or CLIP for text-to-
image generation?
• Generating high-quality images requires capturing

fine-grained details.
• ViT models struggle with this, often resulting in

images that appear patchy and lack fine details.

• DALL-E is a dVAE model with a transformer
that autoregressively models the text and
image tokens as a single stream of data.
• 12 billion parameters version of GPT-3.
• Dataset comprised of 3.3M text-image pairs.

• DALL-E demonstrated zero-shot capabilities:
• It can generate relevant images from text

descriptions not seen during training.

DALL-E: Zero-Shot Text-to-Image Generation

Inference Model
𝑞, 𝑧	 𝑥)

Recall: Variational Autoencoders

Sample
𝑧 ∼ 𝑁 𝑧	 𝜇, 𝑥 , 𝜎,- 𝑥 𝐼)

Generative Model
𝑝. 𝑥	 𝑧)

ELBO Objective
E/~1! /	 3)[log 𝑝. 𝑥	 𝑧) − 𝐾𝐿 𝑞, 𝑧	 𝑥 ||𝑝(𝑧)]

Datapoint 𝑥

𝜇

log 𝜎-

𝜇.(𝑧)

Recall: Discrete Variational Autoencoders

𝑞, 𝑧	 𝑥) 𝑝.(𝑥	|	𝑧)

• VAEs usually use a continuous representation for latent 𝑧.
• But a lot of data we encounter in the real-world favors a discrete representation.
• E.g., images can be described as a collection of objects.

• Furthermore, transformers are designed to work on discrete tokens.

Recall: Discrete Variational Autoencoders

Encoder Decoder

image to discrete codes

discrete codes to image

• VAEs usually use a continuous representation for latent 𝑧.
• But a lot of data we encounter in the real-world favors a discrete representation.
• E.g., images can be described as a collection of objects.

• Furthermore, transformers are designed to work on discrete tokens.
• Discrete VAE (dVAE): replace Gaussian latent with categorical code.

Recall: Discrete Variational Autoencoders

• Discrete VAE (dVAE): replace Gaussian latent with categorical code.
• It modifies the standard VAE by adding a discrete codebook component to the network.
• By quantizing the latent space, dVAE limits the possible values that the latent variables can

take to codebook, a finite set of vectors associate with a corresponding index.
• The output of the encoder network is compared to all

the vectors in the codebook, and the codebook vectors
closest in Euclidean distance are fed to the decoder to
reconstruct the image.

Recall: Discrete Variational Autoencoders

• Discrete VAE (dVAE): Learning the Prior.
• Once the dVAE is fully trained, we can learn the prior 𝑝(𝑧) over the latent codes.
• We can then generate new data by sampling from the prior and feeding it to the decoder.
• Given the encoder outputs a sequence of latent codes for each datapoint, we can use any

autoregressive model (e.g., RNN or Transformer) to train the prior.
• The autoregressive factorization is, given all previous latent codes in the sequence, predict

the next one:
𝑝 𝑧 = 𝑝 𝑧C 𝑝 𝑧D 𝑧C 𝑝 𝑧E 𝑧C, 𝑧D 𝑝 𝑧F 𝑧C, 𝑧D, 𝑧E …

• In Text-to-Image Generation, we want to generate images 𝑥 given captions 𝑦.	
• The Discrete VAE (dVAE) encodes images 𝑥 into codes (tokens) 𝑧.
• The Discrete VAE (dVAE) decoder reconstructs images 𝑥 given 𝑧.
• The Transformer learns to map captions 𝑦 into codes 𝑧, to generate 𝑥 via the dVAE decoder.
• DALL-E maximizes the evidence lower bound (ELBO) on the joint likelihood of the model

distribution over RGB images 𝑥, captions 𝑦, and the codes 𝑧 for the encoded RGB image.

• qG	denotes the distribution of a 32 × 32 grid of codes generated by the dVAE encoder for a 256
× 256 RGB image.
• 𝑝H denotes the distribution of RGB images generated by the dVAE decoder given the codes.
• 𝑝I	denotes the joint distribution over the text and image codes modeled by the transformer.

DALL-E Model: dVAE with Autoregressive Prior

ELBO Objective
𝑝!,# 𝑥, 𝑦, 𝑧 = 𝑝! 𝑥 𝑦, 𝑧 	𝑝# 𝑦, 𝑧

log	𝑝!,# 𝑥, 𝑦 ≥ 𝔼$~&" $	 () [log 𝑝! 𝑥	 𝑦, 𝑧) − 𝛽𝐾𝐿 𝑞* 𝑦, 𝑧	 𝑥 ||𝑝#(𝑦, 𝑧)]

• Stage 1: Train a discrete variational autoencoder (dVAE) to compress each RGB
image (256 x 256) into a smaller image token grids (32 x 32).
• Stage 2: Train an autoregressive transformer from the concatenation of text

tokens with image tokens.
• Some final samples shown below:

DALL-E: Two Stage Training

DALL-E Stage 1: Learning the Visual Codebook
• The dVAE is trained to map 256x256

image to a fixed-size grid of codebook
vectors. For DALL-E, the grid size is
32x32, and the codebook size is 8192,
meaning there are 8192 unique vectors
any grid element can be mapped to.

DALL-E Stage 1: Learning the Visual Codebook
• The dVAE decoder takes the distribution of

latent index and the codebook vectors to
ensemble the latent vector.
• Then it reconstructs the image from this

latent vector.

DALL-E Stage 1: Learning the Visual Codebook
• When an image is processed through the encoder of the dVAE, it is transformed

into the probability distribution of a set of indices pointing to the codebook
vectors, effectively compressing the image.

DALL-E Stage 1: Learning the Visual Codebook
• The process of selecting indices from a codebook is inherently discrete and non-

differentiable.
• DALL-E uses the Gumbel-Softmax distribution as a continuous relaxation of the

discrete distribution.
• This is done by adding Gumbel noise to the logits (the inputs to the softmax function) and

applying a softmax function with a temperature parameter, 𝜏.

DALL-E Stage 2: Learning the Prior Distribution
• The parameters from Stage 1, which include the encoder (that maps images to

tokens) and the decoder (that reconstructs images from tokens), are frozen.
• Indeed, we can now use the frozen decoder to generate images. But how to

align with a text (i.e., the user prompt)?

DALL-E Stage 2: Learning the Prior Distribution
• The text prompt is tokenized using Byte Pair Encoding (BPE), which breaks down

the text into a sequence of up to 256 tokens.
• For images, the previously trained dVAE encoder is used to represent each

image as a sequence of 1024 tokens (which are indices of the learned visual
codebook).

DALL-E Stage 2: Learning the Prior Distribution
• A 12B autoregressive transformer.
• Input (Concatenated Sequence): The text and image tokens are concatenated

to form a single input sequence to the transformer.
• Desired Output (Image Tokens): the model is trained to predict image tokens.

DALL-E Stage 2: Learning the Prior Distribution
• This sequence also includes special tokens for padding, start-of-text, and start-

of-image markers to distinguish different parts of the input.
• In the inference stage, given text tokens, the predicted image tokens by the

transformer will be fed into the decoder of stage 1 to generate the image.

Text to Image Results

DALL-E

Text to Image Results

DALL-E: Summary
• DALL-E is a combination a dVAE model with a 12-billion parameter transformer,

specifically trained to generate images from textual descriptions.
• Architecture:
• Discrete VAE: Uses dVAE to encode images into discrete codes and decode images given the

discrete codes.
• Transformer: Uses an autoregressive transfer model, trained with a dataset of text-image

pairs.

• Key Features:
• Text-to-Image Generation: DALL-E generates images based on descriptive text inputs,

creating objects, scenes, and imaginative visuals from scratch.
• Zero-Shot Learning: Capable of generating novel image concepts that were not explicitly

part of its training, demonstrating zero-shot reasoning.

LLaVA: Large Language and Vision Assistant
• LLaVA aims to integrate a large language model (LLM) with vision capabilities to

understand and generate contextual dialogue based on visual input.
• Model Architecture -- Two Main Components:
• Visual Encoder: Utilizes a pre-trained image encoder (e.g., CLIP) to extract visual features

from images. These features are used to contextualize visual information.
• Language Decoder: A large language model (e.g., Vicuna) that processes both text and the

output from the visual encoder, enabling the generation of human-like dialogue.

• Fusion of Modalities:
• The integration process

involves mapping image
features to the LLM's token
space, making the visual
information compatible for
use by the language model.

Instruction Tuning in LLMs
• Instruction-tuning is a training process where an LLM learns to follow natural

language instructions by being exposed to a diverse set of queries and responses.
• This improves a model’s ability to understand and respond to a broad variety of user

prompts, making interactions more natural, coherent, and context-aware.

• How do we collect the instruction tuning data?
• Human: high-quality, written by humans – high cost
• Machine: strong LLM-based teacher like ChatGPT – affordable cost

Visual Instruction Tuning in LLaVA
• In LLaVA, instruction-tuning is tailored to handle both text and visual inputs,

teaching the model how to interpret and respond to complex multimodal
instructions.
• However, we don’t have multi-modal instruction tuning datasets.
• LLaVA uses image-caption pairs and question-answer sets to simulate real-world queries

about images.

GPT-Assisted Visual Instruction Data Creation
• LLaVA uses image-caption pairs and question-answer sets to simulate real-world

queries about images.
• Given an image and its corresponding caption, a natural extension is to generate a list of

questions. GPT-4 is prompted to create a set of questions and responses.
• To generate richer data that encodes visual content using symbolic representations:

• Captions: Provide descriptions of the visual scene from multiple perspectives.
• Bounding Boxes: Mark locations of objects in the image, providing both object identification and spatial

context.

GPT-Assisted Visual Instruction Data Creation
• Human Annotations:
• Humans provide the initial In-Context Examples in the form of captions and bounding boxes

along with instructions and answers.

• GPT-based Inference:
• GPT-4 is prompted with the initial human-generated context to generate new instructions

and answers.

• The generated data forms a triplet:
• Image
• Instruction based on context
• Answer to the posed instruction

GPT-Assisted Visual Instruction Data Creation
• A total of 158K triplet samples were generated:
• 58K conversations
• 23K detailed descriptions
• 77K complex reasoning

LLaVA Stage 1: Pre-training for feature alignment
• Both the visual encoder and LLM weights are frozen, while LLaVA aligns the image

features 𝐻' with the pretrained LLM word embedding using trainable parameters
W (the projection matrix).
• This stage can be understood as training a compatible visual tokenizer for the frozen LLM.

LLaVA Stage 2: Fine-tuning End-to-End
• The vision encoder is always frozen, but the pre-trained projection layer and LLM

are updated with the language-image instruction-following data.
• A visual chatbot is developed by fine-tuning on the visual instruction-tuning data.
• LLaVA is also evaluated on the ScienceQA benchmark, where the questions are provided in

the form of of natural language or images.

LLaVA Results: Recognizing visual content and generating code

LLaVA Results: Strong Visual Reasoning Capability

LLaVA Results: Strong Visual Reasoning Capability

LLaVA Results: Strong Emergent OCR Capability

LLaVA: Summary
• LLaVA integrates large language models (LLMs) with visual encoders to develop

multimodal capabilities and generate contextual dialogue.
• Architecture:
• Visual Encoder: extracts feature from images, typically using pre-trained CLIP.
• Language Model: utilizes a powerful pretrained LLM (e.g., LLaMA) to interpret and generate

textual content.
• Projection Matrix: a learnable projection matrix that aligns visual features with text

embeddings.

• High-Quality Data Generation:
• Uses GPT-4 to create rich, diverse instruction-following datasets with 158K language-image

samples.

• Two-Stage Training Process:
• Stage 1: Pretraining for Feature Alignment
• Stage 2: Fine-tuning End-to-End

Vision and Language Transformer Models Summary
Model Core Focus Architecture Training Method Applications

BERT and
GPT

Natural
Language
Processing

Transformer Encoder (BERT)
and Decoder (GPT)

Pretraining on large text
corpora (masked tokens for
BERT, autoregressive for GPT)

Text-based tasks like
sentiment analysis, text
generation, etc.

ViT (Vision
Transformer)

Computer Vision Transformer Encoder for
image patches

Supervised training on image
classification

Computer vision tasks:
image classification, object
recognition, etc.

CLIP Unified Vision-
Language
Representation

Dual encoders
(ViT for images, Transformer
for text)

Contrastive learning on 400M
image-text pairs

Zero-shot classification,
Text-to-Image Retrieval,
etc.

ViLBERT Unified Vision
and Language

Dual stream Transformer
with Co-Attention

Masked multi-modal learning &
alignment tasks

Visual Question
Answering, Image-Text
Retrieval, etc.

DALL-E Tex-to-Image
Generation

Discrete VAE with
autoregressive transformer

Two-stages: VAE pretraining,
autoregressive learning

Image generation from
text

LLaVA Multimodal
Dialogue
Generation

CLIP-based visual encoder +
Language Decoder with
projection

Visual instruction tuning data
generated with GPT-4
assistance

Visual dialogue and
reasoning

